APP推广合作
联系“鸟哥笔记小乔”
数据中台建设系列篇:什么样的企业适合建设数据中台
2021-07-30

作者|微微


上篇文章(数据中台建设系列篇:什么是数据中台)我们聊清楚了什么是数据中台,也知道了数据中台的巨大价值,那是不是就可以开始建设数据中台了呢?我想,在正式进入数据中台建设之前,我们来聊聊什么样的企业适合建设数据中台,以便大家能够按照企业实际情况,理性分析,按需选择,防止盲目跟风带来巨大损失。

一、建设数据中台前企业常见数据痛点

由于工作原因,参与了多个数据中台项目,在此过程中,我发现很多企业在建设数据中台前通常会存在一系列的痛点,总结起来,可以概括为以下5大类:


① 指标口径不统一:两张报表里面名称相同的指标【销售额】,展示的结果却不一样,业务怀疑数据有问题,便找开发排查,排查结果显示,这两个指标,一个含税,一个不含税。业务人员面对这些指标的时候,如果不知道指标的业务口径,很难去使用这些数据。


② 需求响应时间长:随着需求的不断增长,运营和分析师抱怨需求的交付时间太长,无法满足快速发展和变化的业务对数据的敏捷研发要求。


③ 取数效率低:随着数据的不断增长,面对海量的数据表,运营和分析师们准确找到数据、理解数据变得越来越困难,大量临时取数工作只能依赖数据研发来完成,使得数据研发无法专注于数仓模型的构建上,从而形成【数据不完善——研发忙于各种临时取数需求——数据不完善】的恶性循环。


④ 数据质量差:时常有数据结果计算错误,导致做出错误的业务决策的情况发生。数据bug频发,故障溯源和恢复常常消耗大量时间。


⑤ 数据成本大:随着业务的发展和时间的推移,企业数据成本呈线性增长,企业每年要为此花费大量的真金白银。


通常,这些问题会随着数据中台的成功上线被解决掉。那数据中台是如何解决这些痛点的呢,在回答这个问题之前,我们先看看以上这些痛点背后的原因是什么?

二、问题背后的原因是什么

① 指标口径不一致通常表现在3各方面:业务口径不一致、计算逻辑不一致、数据来源不一致。


业务口径不一致:业务口径不一致的指标,应该要有不同的标识去区分,比如上面提到的销售额这一指标,明明口径是不一致的,但却没有区分,容易让业务误解;


计算逻辑不一致:业务口径的描述往往是一段话,但对于一些计算逻辑比价复杂的指标,一段话通常是描述不清楚的,如果碰巧两个相同业务口径的指标是不同的数据研发实现的,极有可能会出现计算逻辑不一致的情况;


数据来源不一致:对于部分指标,有多个数据源可供选择,如果数据源正好有些细微差异不被发现时,即使加工逻辑一样,也有可能结果不一致。另外,实时数据和离线数据也会有一定差异。


因此,要实现一致性,就要确保对同一个指标,只有一个业务口径,只加工一次,且数据来源必须一致。


② 需求响应速度慢主要在于烟囱式的开发模式,使得数据复用性低,导致大量重复逻辑代码的研发,影响需求响应速度。


比如,两个指标都需要对同一份原始数据进行清洗,原则上来说,只用一个任务对原始数据做清洗,产出一张明细表,另一个指标开发时,便可直接引用已经清洗好的明细表,这样便可节省一个清洗逻辑的研发工作量。但现实往往是对同一份原始数据做了两次清。洗。


因此,要解决需求响应速度慢的问题,就要提升数据的复用性,确保相同数据只加工一次,实现数据的共享。


③ 取数效率低主要表现在两个方面,一方面是找不到数据,另一方面是取不到数据。


要解决找不到数据的问题,就要构建企业数据资产目录,让数据使用者快速找到并理解数据。取不到数据的主要是非技术人员不会写SQL去提取数据,所以可以为其提供自助取数工具,使其简单快速的获取数据。


④ 数据质量低背后的原因主要是数据问题很难被主动发现和快速修复,经常是使用数据的人反馈投诉时才知道有问题。


数据的加工链路一般比较长,有时超过几十个上百个节点,收到问题反馈时,研发需要逐个任务去排查,然后再重跑有问题的任务及其下游链路的每个任务,这一过程往往需要花费很长的时间,导致故障恢复效率低。


因此,要解决数据质量低的问题,就要实现在业务反馈问题之前主动发现问题,并能快速恢复。


数据成本问题主要是数据重复建设导致的存储和计算资源的浪费,因此,解决这一问题的关键是提升数据共享能力,避免数据重复建设,消除冗余数据。

三、数据中台是如何解决这些问题的

① 构建全局一致的指标词典,实现指标体系化管理


按照数仓主题域的方式对所有指标统一命名、分类,明确指标口径、数据来源、计算逻辑,产出企业的指标词典,由专门团队来负责指标口径的管控;


设计上线方便业务人员查询的指标词典管理系统,所有的数据产品、数据报表都引用指标系统的口径,当鼠标Hover到某个指标上时,浮现该指标的指标口径定义。


② 统一数仓建模,构建全局一直的公共层,提升数据复用性


制定统一的数仓建模规范,在模型设计阶段,强制相同聚合粒度的模型,度量不能重复,保证相同粒度的指标、度量只加工一次;

建设数据地图,方便数据研发能快速查找并准确理解数据。


③ 提供企业数据地图和自助取数系统


数据中台构建了企业数据地图,数据使用者可通过数据地图快速了解企业当前有哪些数据,在哪张表里可以看到,关联了哪些指标和维度;


非技术人员可通过自主取数工具,选取指标,勾选指标的可分析维度,添加筛选条件,点击查询,就可以方便获取数据。


④ 配置数据质量稽核规则和数据预警


通过配置数据质量稽核规则和数据预警,对数据一致性、完整性、正确性和及时性进行监控,确保第一时间发现、恢复、通知数据问题。


⑤ 上线数据成本治理系统


数据治理系统可实现表维度、任务维度、应用维度的全面数据治理。比如一个30天内没有被访问的报表,我们认为其产出价值较低,这时我们可以结合这个报表的所有上游表和下游表产出任务,计算这张表的加工成本,有了价值和成本,便可计算出ROI,根据RO评估,实现低价值报表的及时发现和下线。

四、什么样的企业适合建设数据中台

数据中台的构建需要大量人力物力的投入,所以数据中台的建设一定要结合企业的现状,按需选择,不可盲目跟风。在我看来,企业在选择是否构建数据中台的时,可以从以下几个方面思考:


首先,看企业是否有一定的信息基础,是否实现了业务数据化的过程,有了一定的数据沉淀,数据中台,顾名思义,数据是基础,毕竟巧妇难为无米之炊;


其次,企业是否存在业务数据孤岛,是否有需要整合各个业务系统的数据,进行关联分析的需求,如果有,需要通过构建数据中台,打通数据孤岛,整合各业务系统数据,满足关联分析的需求。比如某零售企业,在业务发展初期,商品、销售、供应链等都是独立的数据仓库,后期要构建智能补货系统,需要打通多个业务系统的数据,因此选择建设数据中台。


最后,在日常的数据使用过程中是否遇到指标口径不一致、需求响应速度慢、数据质量差、数据成本高等痛点,如果满足前两个条件,且在数据应用中存在以上所述的一些痛点,那建议你可以考虑将数据中台项目提上日程了。

-END-

分享到朋友圈
收藏
收藏
评分
评论

综合评分:

我的评分

参与评论(1)

社区交流公约

登录后参与评论
发布评论
鸟哥笔记用户社区交流公约

奇点

2021-07-30 09:50

666很棒
鸟哥笔记限定畅饮吸管杯600ml
超大容量,让你爱上喝水
2000羽毛
立即兑换
【新品】办公/外出两用静音充电小电扇
办公桌必备小电扇!
2000羽毛
立即兑换
Xinstall 10天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
一个数据人的自留地
一个数据人的自留地
数据人交流和学习的社区,关注我们,掌握专业数据知识、结识更多的数据小伙伴。
确认要消耗 0羽毛购买
数据中台建设系列篇:什么样的企业适合建设数据中台吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接