APP推广合作
联系“鸟哥笔记小乔”
数据资产目录建设之数据分类全解(下)
2022-05-09 10:26:42

作者:彭文华

先分类还是先分级?

一般来说,数据分类、分级会在两个领域出现,一个是数据资产目录建设,一个是数据安全管控。

数据资产目录这边偏分类多一些,因为数据资产太多了,需要归归堆,没有一个树形的目录体系,根本没办法查找。

当然,树形目录的弊端也很多,比如查找困难等。所以现在又出现了多分类、标签等方法,辅助进行数据资源的检索。

数据安全管控的方式一般是针对不同级别的数据,施行对应的管控手段,限制人数、可访问范围,所以安全这边主要是数据的分级。

比如《工业数据分类分级指南(试行)》把数据分为一、二、三级,也就是一般、重要、核心数据。《基础电信企业数据分类分级方法》中按重要敏感程度,把数据分为第四级、第三级、第二级、第一级,大概意思就是高敏感、敏感、不敏感、公开。

所以,分类和分级,是两个工作。根据其目的,侧重点不一样,先做那个,取决于当前主推那个任务。

从老彭参与的项目上来看,一般来说,先做数据盘点,整理数据资产目录的较多。也就是先进行数据分类的情况较多。

数据分类案例

上篇讲到,数据分类主要有线分类法、面分类法和混合分类法三种。但是线分法和面分法都有其局限性,所以我们常见的数据分类,还是采用折中的混合分类法较多。

同时,数据分类跟行业属性、业务也有非常大的关系。

以政务数据分类为例,《贵州省政务数据分类分级指南》中建议政务数据可以采用主题分类、行业分类和服务分类三种分类方法。

本标准采用多维度和线分类法相结合的方法,在主题、行业和服务三个维度对贵州省政府数据进行 分类,对于每个维度采用线分类法将其分为大类、中类和小类三级。业务部门可以根据业务需要,对数据分类进行小类之后的细分。对小类的细分,各部门可以根据业务数据的性质、功能、技术手段等一系 列问题进行扩展细分。本标准采用面分类法将政府数据按照多个维度进行关键词的标签构造。

按主题分类的方法,可将贵州省政府数据分为以下大类:综合政务、经济管理、国土资源、能源、工业、交通、邮政、信息产业、城乡建设、环境保护、农业、水利、财政、商业、贸易、旅游、服务业、气象、水文、测绘、地震、对外事务、政法、监察、科技、教育、文化、卫生、体育、军事、国防、劳动、人事、民政、社区、文秘、行政、综合党团。

按行业分类的方法,则将贵州省政府数据分为以下大类:农、林、牧、渔业;采矿业;制造业;电力、热力、燃气及水生产和供应业;建筑业;批发和零售业;交通运输、仓储和邮政业;住宿和餐饮业;信息传输、软件和信息技术服务业;金融业;房地产业;租赁和商务服务业;科学研究和技术服务业;水利、环境和公共设施管理业;居民服务、修理和其他服务业;教育;卫生和社会工作;文化、体育和娱乐业;公共管理、社会保障和社会组织;国际组织。

以电信数据分类为例,《基础电信数据分类分级方法》中主要采用线分类的方法,对电信数据进行完整的分类。

根据基础电信企业业务运营特点和企业内部管理方法,收集企业内所有部门的数据资源,梳理所有数据资源。按照线分类法,按照业务属性(或特征),将基础电信企业数据分为若干数据大类,然后按照大类内部的数据隶属逻辑关系,将每个大类的数据分为若干层级,每个层级分为若干子类,同一分支的同层级子类之间构成并列关系,不同层级子类之间构成隶属关系。所有数据类及数据子类构成数据资源目录树,如图1所示。目录树的所有叶子节点是最小数据类。最小数据类是指属性(或特征)相同或
相似的一组数据。

数据资产目录建设之数据分类全解(下)

电信的数据分类如下:

用户相关数据:

1.用户身份相关数据(用户身份相关数据、用户网络身份相关数据)

2.用户服务内容数据

3.用户服务衍生数据(用户服务使用数据、设备信息)

4.用户统计分析类数据(用户使用习惯和行为分析数据、用户上网行为相关统计分析数据)

企业自身相关数据:

1.网络与系统的建设与运行维护类数据(建设类数据、网络与系统资源类数据、网络与系统运维类数据、网络安全管理类)

2.业务运营类数据(业务运营服务数据、公开业务运营服务数据)

3.企业管理数据(发展战略与重大决策、业务发展、技术研发类、运行管理类、生产经营类、综合管理类)

4.其他数据(合作方提供数据)

以证券数据分类为例,《证券期货数据分类分级指引》中主要采用线分类的方法,按照业务条线,对证券数据进行完整的分类。

证券的数据分类如下:(以数据汇集型会管单位数据分类为例)

1.交易(交易管理、结算管理、行情管理、发行管理、会员管理/机构管理、投资者管理、产品管理)

2.监管(监察与评价管理、研究报告、信息披露管理)

3.其他(标准化管理、业务管理、技术管理、综合管理)

数据分类方法论

其实上篇已经把数据分类的基本方法论说过一遍了。有些彭友觉得不太解渴。今天我们就好好学习一下《证券期货数据分类分级指引》中的内容。可参考性还是很大的。首先放一张体系图:

数据资产目录建设之数据分类全解(下)

这张图上篇已经讲过了,这里就不复述一遍了。《指引》里还给出了具体的分类分级的流程:

数据资产目录建设之数据分类全解(下)

参考上面的图,《指引》中把数据分类分为两个阶段,即业务细分阶段和数据归类阶段,每个阶段细分不同的步骤。

在业务细分阶段,参考他们提出的MS-MS方法(管理主体-管理范围),将业务进行细分。

数据资产目录建设之数据分类全解(下)

管理主体就是“WHO”,管理范围就是“WHERE”,这两个对象一确定,就说清楚了是“谁”具体负责“哪里”的事情,职责范围就清晰了,业务条线自然而然就划分出来了。

业务细分一共分为四个步骤:

步骤一:确定业务一级子类——基本业务条线。参考《证券期货行业数据模型》确定的业务条线作为基础。对!数据分类和模型是紧密关联的!!!

步骤二:确定每个业务条线下所有的业务管理主体(MS)。

步骤三:确定每个业务管理主体对应的管理范围,明确对应关系(MS-MS)

步骤四:命名映射关系——业务二级子类。

此方法可以在每一层都这么用,无限套娃,理论上可以把所有的业务细分到足够细的颗粒度,直到每个人。

但是我们分类的时候一般就分个3、4级就行了,在《指引》里,建议用MS-MS划分一次就行,剩下的层级放在数据归类阶段进行。

在数据归类阶段,参考他们提出的MS-MO(管理范围、管理对象)方法,对数据进行归类。

数据资产目录建设之数据分类全解(下)

MS-MO方法其实也很好理解。管理范围就是延续上面“MS-MS”后面的MS。汇总起来就是MS-MS-MO,就是管理主体(WHO)、管理范围”WHERE“、管理对象”WHAT',即谁,在哪些业务范围,具体管理那些数据。

数据归类总共也分为四步:

步骤一:明确各个业务二级子类的管理范围(MS)。

步骤二:确定业务二级子类的管理范围对应的管理对象(MS-MO),即找到业务二级子类下的全部数据。

步骤三:按照数据细分方法对各个“单类业务数据总和”分别细分,得到数据一级子类。

数据资产目录建设之数据分类全解(下)

步骤四:命名数据一级子类。

然后,就是对已划分明确的数据一级子类进一步细分,细分后产生一个或者多个数据子集:

数据资产目录建设之数据分类全解(下)

经过上面的两大阶段,8个小步骤,就能得到一个完整的数据分类目录:

数据资产目录建设之数据分类全解(下)

数据资产目录建设之数据分类全解(下)

小结

数据分类真的很复杂,绝对不是简简单单拖出来一个脑图就能解决问题的。

其中最麻烦的地方,是对业务的深刻理解,以及各自管理范围和管理对象的梳理。这时候最容易陷入到企业组织本身的缺陷当中。

比如A部门和B部门的职责不清晰,管理范围有交叉、对同一个管理对象都有管理权力,这时候我们就无法划分清楚数据的Owner,也无法确定某个指标的具体负责人到底是谁。

我们就是个搞数据的,最后却要陷入到企业管理本身的纷争中去,这才是最头疼、最恼火的事情。

唉...数据只能解决数据的问题,解决不了管理的问题。就酱。

大数据架构师
分享到朋友圈
收藏
收藏
评分
评论

综合评分:

我的评分

参与评论(0)

社区交流公约

暂无评论,快来抢沙发吧~
登录后参与评论
发布评论
鸟哥笔记用户社区交流公约

Xinstall 15天会员特权
Xinstall是专业的数据分析服务商,帮企业追踪渠道安装来源、裂变拉新统计、广告流量指导等,广泛应用于广告效果统计、APP地推与CPS/CPA归属统计等方面。
20羽毛
立即兑换
超级nice便签砖
超级超级超级奈斯!
1000羽毛
立即兑换
【新品】办公/外出两用静音充电小电扇
办公桌必备小电扇!
2000羽毛
立即兑换
大数据架构师
大数据架构师
发表文章260
历任多家公司大数据总监、大数据架构师,专注于数字化转型领域。
确认要消耗 羽毛购买
数据资产目录建设之数据分类全解(下)吗?
考虑一下
很遗憾,羽毛不足
我知道了

我们致力于提供一个高质量内容的交流平台。为落实国家互联网信息办公室“依法管网、依法办网、依法上网”的要求,为完善跟帖评论自律管理,为了保护用户创造的内容、维护开放、真实、专业的平台氛围,我们团队将依据本公约中的条款对注册用户和发布在本平台的内容进行管理。平台鼓励用户创作、发布优质内容,同时也将采取必要措施管理违法、侵权或有其他不良影响的网络信息。


一、根据《网络信息内容生态治理规定》《中华人民共和国未成年人保护法》等法律法规,对以下违法、不良信息或存在危害的行为进行处理。
1. 违反法律法规的信息,主要表现为:
    1)反对宪法所确定的基本原则;
    2)危害国家安全,泄露国家秘密,颠覆国家政权,破坏国家统一,损害国家荣誉和利益;
    3)侮辱、滥用英烈形象,歪曲、丑化、亵渎、否定英雄烈士事迹和精神,以侮辱、诽谤或者其他方式侵害英雄烈士的姓名、肖像、名誉、荣誉;
    4)宣扬恐怖主义、极端主义或者煽动实施恐怖活动、极端主义活动;
    5)煽动民族仇恨、民族歧视,破坏民族团结;
    6)破坏国家宗教政策,宣扬邪教和封建迷信;
    7)散布谣言,扰乱社会秩序,破坏社会稳定;
    8)宣扬淫秽、色情、赌博、暴力、凶杀、恐怖或者教唆犯罪;
    9)煽动非法集会、结社、游行、示威、聚众扰乱社会秩序;
    10)侮辱或者诽谤他人,侵害他人名誉、隐私和其他合法权益;
    11)通过网络以文字、图片、音视频等形式,对未成年人实施侮辱、诽谤、威胁或者恶意损害未成年人形象进行网络欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法规禁止的其他内容;


2. 不友善:不尊重用户及其所贡献内容的信息或行为。主要表现为:
    1)轻蔑:贬低、轻视他人及其劳动成果;
    2)诽谤:捏造、散布虚假事实,损害他人名誉;
    3)嘲讽:以比喻、夸张、侮辱性的手法对他人或其行为进行揭露或描述,以此来激怒他人;
    4)挑衅:以不友好的方式激怒他人,意图使对方对自己的言论作出回应,蓄意制造事端;
    5)羞辱:贬低他人的能力、行为、生理或身份特征,让对方难堪;
    6)谩骂:以不文明的语言对他人进行负面评价;
    7)歧视:煽动人群歧视、地域歧视等,针对他人的民族、种族、宗教、性取向、性别、年龄、地域、生理特征等身份或者归类的攻击;
    8)威胁:许诺以不良的后果来迫使他人服从自己的意志;


3. 发布垃圾广告信息:以推广曝光为目的,发布影响用户体验、扰乱本网站秩序的内容,或进行相关行为。主要表现为:
    1)多次发布包含售卖产品、提供服务、宣传推广内容的垃圾广告。包括但不限于以下几种形式:
    2)单个帐号多次发布包含垃圾广告的内容;
    3)多个广告帐号互相配合发布、传播包含垃圾广告的内容;
    4)多次发布包含欺骗性外链的内容,如未注明的淘宝客链接、跳转网站等,诱骗用户点击链接
    5)发布大量包含推广链接、产品、品牌等内容获取搜索引擎中的不正当曝光;
    6)购买或出售帐号之间虚假地互动,发布干扰网站秩序的推广内容及相关交易。
    7)发布包含欺骗性的恶意营销内容,如通过伪造经历、冒充他人等方式进行恶意营销;
    8)使用特殊符号、图片等方式规避垃圾广告内容审核的广告内容。


4. 色情低俗信息,主要表现为:
    1)包含自己或他人性经验的细节描述或露骨的感受描述;
    2)涉及色情段子、两性笑话的低俗内容;
    3)配图、头图中包含庸俗或挑逗性图片的内容;
    4)带有性暗示、性挑逗等易使人产生性联想;
    5)展现血腥、惊悚、残忍等致人身心不适;
    6)炒作绯闻、丑闻、劣迹等;
    7)宣扬低俗、庸俗、媚俗内容。


5. 不实信息,主要表现为:
    1)可能存在事实性错误或者造谣等内容;
    2)存在事实夸大、伪造虚假经历等误导他人的内容;
    3)伪造身份、冒充他人,通过头像、用户名等个人信息暗示自己具有特定身份,或与特定机构或个人存在关联。


6. 传播封建迷信,主要表现为:
    1)找人算命、测字、占卜、解梦、化解厄运、使用迷信方式治病;
    2)求推荐算命看相大师;
    3)针对具体风水等问题进行求助或咨询;
    4)问自己或他人的八字、六爻、星盘、手相、面相、五行缺失,包括通过占卜方法问婚姻、前程、运势,东西宠物丢了能不能找回、取名改名等;


7. 文章标题党,主要表现为:
    1)以各种夸张、猎奇、不合常理的表现手法等行为来诱导用户;
    2)内容与标题之间存在严重不实或者原意扭曲;
    3)使用夸张标题,内容与标题严重不符的。


8.「饭圈」乱象行为,主要表现为:
    1)诱导未成年人应援集资、高额消费、投票打榜
    2)粉丝互撕谩骂、拉踩引战、造谣攻击、人肉搜索、侵犯隐私
    3)鼓动「饭圈」粉丝攀比炫富、奢靡享乐等行为
    4)以号召粉丝、雇用网络水军、「养号」形式刷量控评等行为
    5)通过「蹭热点」、制造话题等形式干扰舆论,影响传播秩序


9. 其他危害行为或内容,主要表现为:
    1)可能引发未成年人模仿不安全行为和违反社会公德行为、诱导未成年人不良嗜好影响未成年人身心健康的;
    2)不当评述自然灾害、重大事故等灾难的;
    3)美化、粉饰侵略战争行为的;
    4)法律、行政法规禁止,或可能对网络生态造成不良影响的其他内容。


二、违规处罚
本网站通过主动发现和接受用户举报两种方式收集违规行为信息。所有有意的降低内容质量、伤害平台氛围及欺凌未成年人或危害未成年人身心健康的行为都是不能容忍的。
当一个用户发布违规内容时,本网站将依据相关用户违规情节严重程度,对帐号进行禁言 1 天、7 天、15 天直至永久禁言或封停账号的处罚。当涉及欺凌未成年人、危害未成年人身心健康、通过作弊手段注册、使用帐号,或者滥用多个帐号发布违规内容时,本网站将加重处罚。


三、申诉
随着平台管理经验的不断丰富,本网站出于维护本网站氛围和秩序的目的,将不断完善本公约。
如果本网站用户对本网站基于本公约规定做出的处理有异议,可以通过「建议反馈」功能向本网站进行反馈。
(规则的最终解释权归属本网站所有)

我知道了
恭喜你~答对了
+5羽毛
下一次认真读哦
成功推荐给其他人
+ 10羽毛
评论成功且进入审核!审核通过后,您将获得10羽毛的奖励。分享本文章给好友阅读最高再得15羽毛~
(羽毛可至 "羽毛精选" 兑换礼品)
好友微信扫一扫
复制链接